基于深度学习的图像分割方法,主要研究领域是在于语义分割,即根据图片内容,将图像分为多个有含义的部分,对于农产品分类而言有着革命性的意义。全卷积网络FCN是深度学习用于进行图像分割的先驱,以分类模型AlexNet为基础,将其3层全连接层转化为反卷积层进行上采样,从而将输出有特征分类转化为区域特征热力图。
图像分割算法是用于农产品光电检测分级分类的基础任务,传统算法的优势在于结构简单,,但对复杂环境的适应性较弱。深度学习方法受到环境影响较少,但需大量样本支持,如何正确的获取样本,以及提高算法的整体效率是当前需要解决的主要问题。在实际使用中,深度学习由于性能问题尚无法完全取代传统算法,使用者可以根据具体的需求选择合适的算法。
传统提取算法,阙值提取法是图像分割中使用较为广泛的方法,通过阙值的设置,将处于阙值区间内的像素区域归纳为同一区域,从而分割图像。此类算法的缺陷在于只考虑了目标的灰度信息,从而缺少鲁棒性。在这类算法中,如何获取一个合理的阙值是算法成功的关键,手动选取阙值无法具备通用性,易受环境变化的影响,主流的选取阙值的方法有类间方差法和熵阙值分割法。
以上信息由专业从事茶叶检测的安徽金标准于2025/3/18 23:30:24发布
转载请注明来源:http://beinan.mf1288.com/ahjbzjc-2849181489.html